Averaging Principle for Differential Equations with Hysteresis
نویسنده
چکیده
The goal of this paper is to extend the averaging technique to new classes of hysteresis operators and oscillating functions as well as to bring more consistency into the exposition. In the first part of the paper, making accent on polyhedral vector sweeping processes, we keep in mind possible applications to the queueing theory where these processes arise naturally. In the second part we concentrate on the systems with the classical Preisach nonlinearity.
منابع مشابه
A NOTE ON THE AVERAGING METHOD FOR DIFFERENTIAL EQUATIONS WITH MAXIMA
Substantiation of the averaging method for differential equations with maxima is presented. Two theorems on substantiates for differential equations with maxima are established.
متن کاملTHE FULL AVERAGING OF FUZZY DIFFERENTIAL INCLUSIONS
In this paper the substantiation of the method of full averaging for fuzzy differential inclusions is considered. These results generalize the results of [17, 20] for differential inclusions with Hukuhara derivative and of [18] for fuzzy differential equations.
متن کاملDouble averaging principle for periodically forced slow-fast stochastic systems
This paper is devoted to obtaining an averaging principle for systems of slow-fast stochastic differential equations, where the fast variable drift is periodically modulated on a fast time-scale. The approach developed here combines probabilistic methods with a recent analytical result on long-time behavior for second order elliptic equations with time-periodic coefficients.
متن کاملTime Averaging for Random Nonlinear Abstract Parabolic Equations
It is well known that the averaging principle is a powerful tool of investigation of ordinary differential equations, containing high frequency time oscillations, and a vast work was done in this direction (cf. [1]). This principle was extended to many other problems, like ordinary differential equations in Banach spaces, delayed differential equations, and so forth (for the simplest result of ...
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کامل